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This thesis provides an exposition of results that use topological tech-
niques in social choice theory. We first introduce traditional social choice
theory, including a proof of Arrow’s Impossibility Theorem, and outline the
basics of topology that we will need. Then we present Chichilnisky’s funda-
mental results in continuous social choice theory. Finally, we present Barysh-
nikov’s topological proof of Arrow’s Theorem.

1 Traditional Social Choice Theory

Social choice theory is the mathematical study of formal mechanisms that ag-
gregate individuals’ preferences into one group preference. The most obvious
example is democratic elections, where majority voting is used to aggregate
voters’ preferences over candidates into one selected candidate, the winner.
Other examples include matching mechanisms such as those used to assign
doctors to residencies at hospitals around the country. In this section, we
outline the basic results of the theory.!

*Senior Honors Thesis, Stanford University Department of Mathematics. Thanks to
Soren Galatius for advising this thesis, to Marc Pauly for introducing me to social choice
theory, and to Chris Douglas for introducing me to algebraic topology. Thanks also to the
Stanford Mathematics Department and Stanford Undergraduate Research Programs for
funding to support this research during summer 2007.

1See [1] and [5] for more detailed introductions to social choice theory.



1.1 Preliminaries

First, we introduce the basic language of social choice theory. We call the
individuals who have preferences the wvoters. We denote by V' the set of
voters, which for now we assume to be finite, and which often we will assume
for notational simplicity to be {1,2,...,k}. The voters have preferences over
different alternatives. We denote by X the set of alternatives, which again
we will assume for now is finite.

We represent preferences by a binary relation R over X. If (z,y) € R,
we normally write x Ry. We require this relation R C X x X to satisfy three
properties:

1. reflexivity: xRz for all z € X
2. transitivity: TRy, yRz = tRz
3. completeness: for all z,y € X, either xRy or yRx (or both).

Any such relation is called a weak preference relation. The interpretation
of xRy is that x is preferred at least as much as y. These requirements
correspond to what makes sense for preferences to be “rational.”?

From this weak preference relation, we can define two more relations. We
define a strict preference relation P C X x X by zPy iff x Ry but not yRx.
If Py, then the interpretation is that = is more preferred than y. We define
an equal preference relation £ C X x X by 2By iff xRy and yRx.? If zEy,
then the interpretation is that z is preferred equally to y. We observe that
E' is symmetric. Note that R can be determined from F and P, and vice
versa. We will interchange between these notations, as appropriate.

Let R denote the set of all (weak) preference relations over a given set
X.

Definition 1. A social welfare function is a function f : RF — R.

We define a profile of preferences to be a k-tuple (Ry,..., Rg) of prefer-
ences, where R; is voter ¢’s preferences. A social welfare function thus takes a
profile of preferences, one for each voter, and aggregates them into one group
preference. Social choice theory thus is the study of social welfare functions.

2See [1], §1.1, for more on why these are natural requirements.

3This is often called indifference in the literature, and denoted by I, but “equal pref-
erence” I think more accurately describes what it reflects. See [8] for a (rough and pre-
liminary) discussion of this issue.



NoTATION: When the social welfare function f is clear, we will usually
write R for the group preference f((Ry, ..., Ry)) (and likewise for E and P).
We sometimes also write Ry for f((Rs,..., Ry)) when the input preference
profile is clear, but we want to emphasize the function f.

Observe that a social welfare function takes a profile of preferences and
outputs not merely one “winner” but a complete ranked list. A function
that instead outputs merely one winner (or a set of winners) is called a
social choice function. Of course, any social welfare function defines a social
choice function: if f : R¥ — R is a social welfare function, then we define
F: RF — P(X) to be F((Ry,...,Ry)) = {z € X|Vy € X,zR;y}. This
chooses the top-ranked alternative. Often, all that matters is the social
choice function defined; it’s not relevant who comes in second or third. But
it’s standard to develop the more general framework of welfare functions.*

1.2 Examples of Social Welfare Functions

We now present some standard examples.

Example 2. The simplest social welfare function is the constant social wel-
fare function that assigns some fized preference K to all preference profiles
(Ri,...,Rg). For example, a rigged presidential election between three can-
didates a,b, and ¢ where the outcome is going to be aPbPc no matter what
the votes are is a constant social welfare function.

Example 3. A dictatorial social welfare function defines the group preference
R to always be the same as some (fized) voter i’s preference R;.

Example 4. Restricting the domain to only strict preferences, we can define
the Borda count social welfare function. For each alternative z, let p;(z) =
1+ |{y € X | xPy}|; this assigns | X| points to the highest-ranked alternative,
| X | — 1 points for the second highest-ranked alternative, all the way down to
L point for the lowest-ranked alternative. Let p(x) = > ..y, pi(x). Then we
define xRy iff p(x) > p(y).> This is the mechanism used in sports MVP
(most valuable player) voting and in sports ranking polls.

4See [1] for much more on the technical details of the relationship between choice and
welfare functions. In particular, one justification for transitivity is that it ensures the
existence of a “choice set” of most desired alternatives.

SWith appropriate modifications, this can be defined on weak preferences as well.



1.3 Properties of Social Welfare Functions
We now present some basic properties a social welfare function might have.

Definition 5. A social welfare function satisfies the (weak) Pareto axiom if,
whenever xRy for all i € V, then xRy.

Definition 6. A social welfare function is non-dictatorial if there is no voter
1 €V such that xRy if and only if xRy, for all z,y € X.

Definition 7. A social welfare function satisfies the axiom of Independence
of Trrelevant Alternatives (IIA) if, given x,y € X, whenever two preference
profiles (Ry, ..., Ry) and (R}, ..., R}.) are such that xRy if and only if xRy
for all i € V, then xRy if and only if xR'y.

All of these properties are quite reasonable expectations to have for a
social welfare function. If everyone agrees that x is better than y, it would
be foolish for the outcome to rank x lower than y. If a social welfare function
were dictatorial, then it wouldn’t in any sense be aggregating the group’s pref-
erences. ITA is the most difficult to justify: the intuition is that it shouldn’t
be relevant to the group’s decision between z and y what the group thinks
about other alternatives.

REMARK: Social choice theory relies on ordinal, not cardinal preferences.
There is no sense of “how much” one alternative is preferred to another.

1.4 Arrow’s Theorem

The seminal result in social choice theory is Arrow’s Impossibility Theorem,
which shows that we cannot in general hope to have all of these desireable
properties listed above.

Theorem 8 (Arrow’s Impossibility Theorem). When |X| > 3, there is no
non-dictatorial social welfare function f : RF — R that satisfies both the
Pareto principle and IIA.

(Note that Pareto and non-dictatorship imply that the number of voters
k>1.)

A constant social welfare function violates the Pareto axiom. A dictatorial
social welfare violates, of course, the non-dictatorial axiom. Borda count does
not satisfy ITA.

6See [1], §2.1, for more discussion on ITA.
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One might wonder why majority voting doesn’t work. We define majority
voting in a pairwise manner: zPy if [{i € N| zPy}| > |{i € N| yPxz}|.
This does indeed satisfy Pareto, ITA, and non-dictatorship, but it sometimes
produces a non-transitive relation. Consider the following set of preferences:

PP P
a c
b a
c b

where the preferences are strict and x is above y in a column when z is strictly
preferred to y. (We often use such diagrammatic representations, which
provide more intuitive depictions of preferences.) Pairwise majority voting
gives aPb,bPa, cPa, contradicting transitivity. This is known as Condorcet’s
paradox and dates to the 18" century.

(When there are only 2 alternatives, however, majority voting works just
fine. Indeed, it can be shown that it is the unique procedure that satisfies a
few basic axioms. This is May’s Theorem; see [5], §3.1.)

We present a proof of Arrow’s Theorem from [1]. First, we need a few
definitions. Fix some social welfare function f.

Definition 9. A subset L C'V' of voters is semi-decisive for x overy (with
respect to f ), denoted xDyy, if [xPyy,Vi € L;yP;x,Vj & L| implies that x Py,
for all profiles p = (Ry, ..., Ry) € R*.

Definition 10. A subset L C V of voters is decisive for x over y (with
respect to f ), denoted x Dy, if [v Py, Vi € L| implies that x Py, for all profiles
p=(Ry,...,R) € RE.

The proof requires one lemma.

Lemma 11. Let f be a transitive social welfare function that satisfies the
ITA and weak Pareto axioms, and let L C V. Suppose there is some x,y € X
such that L is semi-decisive for x over y. Then for all pairs (u,v) € X x X,
L is decisive for u over v.

Proof. Consider some z € X\ {z,y}. We will first show that xDyz. Let p
be an arbitrary preference profile such that xP;z for all i« € L. Consider now



a profile p’ where, for i € L, xP/yP!z and for ¢ ¢ L,yP/z,yP/z. Diagramati-
cally, this looks like:

PicL|PicL|P,idL

T T Yy
Yy
z z x7z

where x7z means that the relationship betwen z and z is not specified. Be-
cause L is semi-decisive for x over y, we have xP'y. By Pareto, since yP/z
for all i € V', we have yP’z. Transitivity then gives us zP’z. The profiles p
and p’ are identical when restricted to the alternatives x and z over L, and
we can make the preferences of p and p’ match for i ¢ L (since we hadn’t
specified it yet for p'), so we get xPz by IIA. Therefore, L is decisive for x
over z. Thus we have

Vz & {z,y}, 2Dy = 2Dz (1)

Since 2Dy z, we have a fortiori Dy z. The same argument, interchanging
y and z, gives xDpy.

Now, let p* be an arbitrary preference profile such that y P’z for all i €
L. Consider a profile p* where, for all i € L,yPtzP"z and for all i ¢
L, 2Pz, yPr. Diagramatically, we have:

PicL|PricL|PridlL
Y (0 z1y
X
z z xz

Because xDyz, we have xPTz. By Pareto, we have yP*xz. Transitivity then
gives yPTz. Since p* and p™ are identical when restricted to y and z over L,
and since we can make the preferences of p* and p™ match for i € L (because
we hadn’t specified it yet for p*), we get yP*z. Therefore, we have yDyz.
Thus, we have shown

Vz ¢ {x,y} Dy = yDyz. (2)

Since yDyz, we have a fortiori yDyz. By the same argument that gave us
equation (1), we get yDrx. Now consider any {u,v} € X\ {z,y}. By (1)
we get xDyv, and by (2), replacing y by v, we get vDyw. This concludes
the proof, since we have already shown the lemma in the cases where one of
u,v € {z,y}. O



With this lemma, we can finish the proof of Arrow’s theorem.

Proof. 1t suffices to show that there is an individual ¢ and alternatives x,y €
X such that x[){i}y. Note that the set of all voters V' is a decisive and thus
semi-decisive set for any pair, by Pareto. Therefore, there is a semi-decisive
set. Let L be a semi-decisive set of minimal size; without loss of generality,
we can assume that L is semi-decisive for x over y and that ¢ € L. Let
A= |L|.

Assume for the sake of contradiction that A > 1. Consider the following
preference profile p:

B[ P.je\{i} | Puk &L
x z Y
Y x z
z Yy x

Because 2Dy, we have £Py. Suppose zPy: then we would have L\ {i} is
semi-decisive for z over y, by IIA, contradicting L’s minimality. Therefore,
we have —zPy, that is, yRz. By transitivity, we have xPz. Therefore, by
ITA, 2 D3z and so x[){,;}z, contradicting A > 1. O]

We will present an interesting topological proof of this theorem in §4.

1.5 Escaping Arrow’s Theorem

Arrow’s Theorem is a pretty dismal result. It shows that there is no rea-
sonable way of aggregating preferences in the general case (though majority
voting works well if there are just two candidates). Much of social choice
theory has consisted of attempts to salvage as many of these as properties as
possible.

One escape from this impossibility is to restrict the domain of the social
welfare function. The most common domain restriction is known as single-
peakedness: if all of the voter’s preferences meet a certain pattern and there
is an odd number of voters, then simple majority voting does produce a
transitive relation.



2 An Outline of Topology and Algebraic Topol-
ogy

Traditional social choice theory deals with discrete, usually finite sets of
alternatives, and its formal results rely on straightforward, combinatorial
arguments. In the following, we will be considering social choice theory with
continuous sets of alternatives—subsets of Euclidean space, for example—and
continuous social welfare functions. To prove formal results in this continuous
framework, we will need more powerful mathematical machinery: the tools
of algebraic topology. In this section, we review the basics of topology and
algebraic topology.

2.1 Point Set Topology

There are several different ways of thinking of topology. While one simplis-
tic perspective is to see topology as being “rubber-sheet” geometry, a more
useful approach for us is to see topology as being fundamentally the study
of continuity. In metric spaces, continuity can be defined using open sets,
which in turn are defined by e-balls using the given metric. In topology, the
notion of distance is done away with, and the open sets are taken as the
fundamental building blocks. Thus, though there is no notion of distance
in topological spaces, continuity still makes sense—and, indeed, this is often
the appropriate level of abstraction to study continuity at.

For the details of the basics of topology, see, for example, [11]. What is
relevant for our purposes is that a topological space is a pair (X,U), where
U C P(X) is the collection of all open setsin X. (For this to be a topological
space, U needs to be nicely behaved under various set-theoretic operations.)
We often speak of simply X as being a topological space, without explicitly
including its collection of open sets U. A function f : (X,U) — (Y,V) is
continuous if, for all open sets V' in Y (i.e., all V' € V), the inverse image
f7H V) is open in X (i.e., it is in U). Two topological spaces X and Y
are considered “the same” if there is a bijective function f : X — Y that
is continuous and whose inverse is also continuous; such a map is called a
homeomorphism, two such spaces are called homeomorphic, and we write
X2Y.



2.2 Types of Topological Spaces: Manifolds and CW
Complexes

One of the most important types of topological spaces are manifolds. Man-
ifolds are spaces that essentially “look like” Euclidean space up close. For-
mally, an n-dimensional manifold M is a topological space where, for each
point x € M there is an open set U containing x that is homeomorphic to
R™. For example, the standard sphere S? is a 2-dimensional manifold, since
locally it looks like a plane. Also of relevance to us will be higher dimensional
spheres, defined by
Sk = {x e RF! | x| = 1} :

Another mathematical structure that will be useful for us is that of a CW
complex, which allows us to view certain topological spaces as being “built”
from combining together cells of different dimensions. Let us define an n-cell
as being either a point for n = 0 or else homeomorphic to S™. Now, we built
an n-skeleton X" inductively from an n — 1-skeleton X"~ ! and a collection of
n-cells e by gluing the n-cells onto X! via maps ¢, : "' — X! that
glue the boundaries of the n-cells onto the complex X" . Then, we either
continue this process infinitely, or stop if there are only a finite number of
cells. Most useful topological spaces can be given a CW complex structure,
and several of our results will be stated for CW complexes. See, e.g., [6],
Chapter 0 and Appendix, for more details.

2.3 Algebraic Topology

One of the fundamental problems of topology is to classify different topo-
logical spaces. While it’s sometimes hard to show directly that there is a
homeomorphism between two homeomorphic spaces, since this would require
the effective construction of a homeomorphism, at the very least, we would
want to be able to show that two non-homeomorphic spaces are, indeed, not
homeomorphic.

One technique for doing so is through the use of so-called algebraic in-
variants. For some class of topological spaces X and some class of algebraic
objects G, we define a function f : X — G. For this function to be well-
defined, it must assign the same algebraic object to homeomorphic topolog-
ical spaces. (Hence the name “algebraic invariant”; it is an algebraic object
that is invariant under homeomorphism.) With this notion, we have a suf-
ficient (though usually not necessary) condition for distinguishing between
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two spaces: if two spaces X and Y have different assigned algebraic invari-
ants, they cannot be homeomorphic. These invariants will furthermore be
functors, which means that they not only define a map from X to G, but also
they define in a special way maps between basic functions between spaces in
X (usually continuous functions) and basic functions between objects in G
(usually group homomorphisms); these maps will be called induced maps.

Algebraic topology is the study of such algebraic invariants of topological
spaces. The three most important algebraic invariants are the homotopy,
homology, and cohomology groups, all of which we will use in our results on
continuous social choice theory. To explain any of these adequately is far
beyond the scope of this exposition; see [6] for such a treatment. We will
present a basic outline of fundamental groups; the other two fundamental
invariants of algebraic topology—homology and cohomology—are much less
intuitive, though often easier to calculate. Finally, we will briefly list some
basic results that will be used in the following.

2.3.1 Homotopy Groups

The simplest of the homotopy groups, called the fundamental group, is at
least somewhat intuitive. Let X be a topological space, and let x be a fixed
point in X. Consider all of the possible loops through X starting at x, that
is, the set of all functions ¢ : [0,1] — X such that ¢(0) = ¢(1) = z. Now,
we define an equivalence relation on such loops: we say that ¢ and ~ are
homotopic if there is a family of continuous functions f; : [0,1] — X, for
t € [0,1] such that fy = ¢, fi = ¥ that are also continuous with respect to
t. Intuitively, this means that we can continuously deform the path ¢ to
the path ¢. If ¢ and ¢ are homotopic, we write ¢ ~ 1. We now define
(X, x) to be the set of all equivalence classes of such loops based at z.
We can add a group structure to this set, by defining multiplication in an
appropriate way as the concatenation of different loops. This group is known
as the fundamental group or first homotopy group of X. (It turns out that
the basepoint is usually not important.)

A solid sphere, for example, has a trivial fundamental group, since any
loop can be continuously deformed into a constant loop at the center point.
The circle S has a fundamental group isomorphic to Z; the loop going once
around (in the predetermined “positive” direction) corresponds to 1, the
loop going twice around corresponds to 2, the loop going once around in
the opposite direction corresponds to —1, etc. Since the solid sphere and
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the circle have different fundamental groups, we know that they must be
non-homeomorphic.

There are also higher-dimensional generalizations of the fundamental group,
called the higher homotopy groups. We could have defined our loops not as
functions ¢ : [0,1] — X with the condition that ¢(0) = ¢(1), but rather
as functions ¢ : S' — X. The higher-dimensional homotopy groups consist
of equivalence classes now of functions ¢ : S¥ — X for & > 1. These are,
however, much more difficult to calculate than the fundamental group. (One
useful property of the homotopy groups is their behavior under cartesian
products: for connected spaces X, m,([ [, Xo) =[], mn(Xa).)

2.3.2 A Few Results in Algebraic Topology

We present the statement of two important theorems that we will be using.

Theorem 12 (Whitehead’s Theorem). Let X and Y be connected CW com-
plexes, and assume that a map f : X — Y induces an isomorphism f, :
Tn(X) = m,(Y) for alln. Then f is a homotopy equivalence.

In particular, if all the homotopy groups of a CW complex are trivial, then
it must be homotopy equivalent to a point, i.e., contractible. For details, see
6], §4.1.

The Hurewicz Isomorphism Theorem says that there’s a nice relationship
between the first non-zero homotopy and homology groups.

Theorem 13 (Hurewicz Isomorphism Theorem). Let X be a space and n >
2. If m(X) =0 fori <n—1, then H;(X) =0 fori <n and m,(X) = H,(X).

See [6], §4.2 for details.

3 Continuous Social Choice

Traditional social choice theory deals with finite sets of alternatives—a set
of candidates in an election, for example. Some scholars did study the cases
when these alternatives were infinite, but still the alternatives were treated
as distinct, discrete objects.

There are many natural cases, however, where a set of alternatives should
be continuous. Much of economic theory is based on the idea of commodity
spaces, which are represented as the positive quadrants of R” (each dimension
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represents the amount of a given commodity; for example, one might have
R3 as the commodity space for pounds of rice, gold, and oil). Or voters
might choose between different geographic locations: Gaertner [5] gives the
example of a group of vacationers choosing which point around a circular lake
to camp out at. In the early 1980s, the mathematical economist Graciela
Chichilnisky developed a framework to develop social choice theory for such
continuous sets of alternatives, and used tools from algebraic topology to
prove impossibility results analagous to Arrow’s theorem.

3.1 The Basic Framework

Let V' ={1,...,k} be a finite set of voters. We define our set of alternatives
X to be some subset of R"; we often call this the choice space.

How do we define preferences on X7 In general economic theory, the
standard approach is to consider some utility function u : X — [0, 00) that
assigns to each point its “utility.” Then we define zRy iff u(z) > u(y).
In social choice theory, preferences are ordinal: there is no notion of “how
much” one alternative is preferred to another. Thus, two utility functions
u,v : X — R are equivalent in the ordinal framework if there is a monotonic
function f : R — R such that u = f owv.

It is meaningless for our choice space to be continuous unless in some sense
the preferences are continuous: for sufficiently close x and ¥, the preferences
should be similar. Thus, it seems reasonable to assume that, at the very
least, such underlying utility functions are continuous.

The approach taken by Chichilnisky and others is to consider the gradient
of these utility functions. Let p be a vector field on X; the idea is that p(x)
represents the direction of most increasing preference. Furthermore, since the
preferences are ordinal, we normalize all of these gradient vectors to length
1. Thus, we require that the vectors all be non—0, which means that our
utility functions have no critical points.

Now we can move to the classic results of Chichilnisky.

3.2 Chichilnisky’s Impossibility Theorem

Let the choice space X be homeomorphic to the unit ball in R™. We define
preferences on X as a continuous vector field, normalized to length 1. We
denote the set of all such vector fields by P and an individual vector field by
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p, or p; for a given voter.” In this context, we are curious about the existence
of functions f : P¥ — P. We require that these functions be continuous,
a natural assumption considering that our spaces are continuous.® For all
theorems, we assume that £ > 2.

Of course, to define “continuity,” we need to define a topology on the pref-
erence space. We use the C'! topology induced by the sup norm: ||p — ¢ :=
sup,cy ||[p(x) — q(x)|| . Various papers discuss the technicalities of this; see
9] for details of which topologies work and for references to the various dis-
cussions on the relative merits of different topologies.

Now, we list some relevant properties these functions might have:

Definition 14. A social welfare function f is anonymous if

f(plvp?v s apk) = f(p0(1)7p0(2)7 s apa(k))
for any permutation o : V — V.

Definition 15. A social welfare function f respects unanimity if f(p,...,p) =
.

Anonymity is a stronger form of non-dictatorship: not only does no in-
dividual have complete control over the preferences, but every individual is
treated equally. Unanimity is a weaker form of the Pareto criterion.

We can now state the original impossibility theorem of Chichilnisky [4].
Recall that X C R™.

Theorem 16. There is no continuous social welfare function ¢ : P¥ — P
satisfying anonymity and unanimity.

Proof. Suppose for the sake of contradiction that there were such a function
¢. Fix some z € X. At this given z, we note that {p(x)| p € P} = S"1.

"This seems to be the standard notation for continuous social choice, as opposed to the
P, P notation for discrete social choice.

8This is a non-trivial requirement, and the whole continuous social choice paradigm—
which is completely dependent on the requirement—is susceptible to the criticism that
it is too strong. After all, in discrete social choice, many social welfare functions don’t
seem “continuous,” in the sense that they are not always stable with respect to small
perturbations: in majority voting, for example, it takes a switch by only one voter to
drastically change the outcome. But, then again, this should only really be troubling
and/or surprising if there is a “large” number of voters, in which case the probability of
such a perturbation having an effect is very low.
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The idea of the proof will be to turn the question about existence of a con-
tinuous function ¢ : P¥ — P satisfying the anonymity and unanimity into a
question about the existence of a continuous function ¢ : (S 1)¥ — Sn=1,
We will then show that 1) cannot exist.

Define I', : P — S™! to be I',(p) = p(z). This continuously maps
a preference over the whole space into just its direction at x. Define X :
Sl — P to take a vector v € S"! and send it to the constant vector field
p(y) = v for all y € X. This gives a map A\* : (S""1)* — P* that maps
a k-tuple of unit vectors (vy,...,v,) to the k-tuple (pi,...,px) of constant
vector fields. We note that this is also continuous.

We can now define v : (S"1)¥ — S™~! by the following commutative
diagram:

pE £

ST
n—1\k ¥ n—1
(s —— S
Our new function ) is continuous since \¥, o, and I', are. We observe
also that it respects unanimity and anonymity, since ¢ does.
It suffices now to show that 1) is impossible. We have thus reduced the
problem to that of constant (or what Chichilnisky calls “linear”) preferences.

We demonstrate the proof for the case k = 2, but it can easily be gener-
alized for arbitrary k. Consider the following diagram

Sn—l % Sn—l ¥ S Sn—l

AT/
Idsnfl

Sn—l

where A sends p — (p,p). We know that this diagram commutes by the
condition of unanimity. This induces the following commutative diagram on
cohomology with coefficients in Z,:

Hn—l(sn—l XSn_l,Zg) L Hn_l(Sn_l,Z2>

A*l /
Idsnfl

Hn—l (Sn—l7 Zg)
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Let A* and B* be generators of H" 1(S"1 x 8" Zy) & Zy x Zy, with
support by A and B, which, in the case of n = 1, we can see as sides of the

torus:
B

100
B
Let G* be a generator of H"1(S"1 Z,). We note that we cannot have
PHGT) = A
or
b (G*) = B*
by anonymity. Thus we must have either
v*(G*) = A"+ B”
or
P (G*) =0 (mod 2).
We cannot have ¢*(G*) = 0, since if we did,
A(G7) 0 (G) = AT(0) = 0 £ G* = [d5 (G"),
violating the commutativity of the diagram. Thus we must have
V(G*) = A"+ B".

By symmetry, A*(A*) = A*(B*) = k for some k € Z;. Thus A*(A* +
B*) = k+k =2k =0 (mod 2). But this contradicts the commutativity of
the diagram:

A*(YH(G") = AY(A"+ B
= A*(0)=0
£ 1=Id . (GY)

Thus, we have a contradiction. A similar proof applies for arbitrary k£ > 2
by using coefficients in Zj. O]

(Note that, for what we have proved, all we need is “homotopy anonymity.” )
There are also more intuitive, geometric proofs in special cases, e.g., when
k = 2. Chichilnisky also discusses a connection to fixed point theorems.
Mehta [10] presents this result in terms of degree theory. We present a sec-
ond proof below, as part of Theorem 17.

15



3.3 Necessary and Sufficient Conditions for Existence

A later theorem provides necessary and sufficient conditions for the existence
of a satisfactory social welfare function. This strengthens Chichilnisky’s orig-
inal result (Theorem 16).”

Theorem 17. [3] Let P be a parafinite CW complez™® reflecting preferences;
furthermore, assume that it is a simplicial complex. A necessary and suffi-
cient for the existence of a continuous social welfare function ¢ : P* — P
satisfying unanimity and anonymity, where k > 2, is that the spaces P be
contractible.

Proof. First, suppose the spaces P are contractible. We want to show the
existence of a map P* — P that is anonymous and satisfies unanimity. The
anonymity criterion corresponds to requiring the existence of a map from
Pt/ — P, where P*/Y, is the quotient group of the k-fold product of P
modulo the action of the symmetric group permuting the factors. Consider
the following diagram

P> Pty - p
\_/
id

We want to show the existence of this function ¢ such that the diagram
commutes; this will ensure unanimity. Since P is a simplicial complex, P* /3
is a CW complex (see [6], p. 482). Therefore, we can indeed extend by
induction on cells the identity map id : P — P to the map ¢ : P*/3;, since
P is contractible and therefore has trivial homotopy groups ([6], Lemma
4.1.7). Thus, such a map ¢ exists.

Now suppose that there is a continuous social welfare function ¢ : P* — P
satisfying unanimity and anonymity. We will show that P must be con-
tractible. Since P is a CW complex, by Whitehead’s Theorem (Theorem
12), it suffices to show that all the homotopy groups are trivial.

9We prove a slightly weaker result than Chichilnisky and Heal present. They present
the necessary and sufficient conditions for CW complexes, but their proof of sufficiency
seems somewhat flawed. (The gist of their proof is that, if the preference space can be
made convex, then convex averaging works; the problem is that it’s not clear from their
proof how to get the convex space from the preference space.) Our proof requires that the
spaces be simplicial complexes for sufficiency; [12] and [7] provide proofs for a much wider
range of spaces.

10 A CW complex is parafinite if it has a finite number of cells in any dimension; this term
is used in the continuous social choice literature, though not in the topology literature.
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Our map ¢ induces a homomorphism
o mi(PF) — mi(P)
on homotopy groups. We note that
m(P*) = [[m(P).
k

By anonymity, since

we have, for any v € ¢;(P),

(7,7, --,7) = 7- (3)

Let e denote the identity element of 7;(P). By ¢, being a homomorphism
and by anonymity, we have

(VY- yy) = Ep*(%e,e...,e)—|—<p*(e,7,e,...,e)—1—---—|—<p*(e,e,...,7)l

-

k
= k-pr,6,...,€)
Thus, we have, for any v € m;(P),
v=k- p.(v,ee,...,€). (4)

We want to show that ¢;(P) = 0 for all i > 0. First, let us consider i > 2.
Let i be the first non-zero homotopy group. By the Hurewicz Isomorphism
Theorem (Theorem 13), m;(P) = H;(P). Since P is a parafinite CW complex,
H;(P) is finitely generated. It therefore consists of a free part consisting of
copies of Z and a torsion part consisting of Z; for various k > 2. We will
show that both of these parts must be trivial.

Let v be a generator of the free part of m;(P). By (4), v = kn, for some
n = @«(v,e,...,e) € m(P). Since k > 2, if  is a generator, then v = e,
and so the free part is trivial. Now let v be a generator of the torsion. Once
again, we have v = kn for some n € m;(P), which forces v = e and so the
torsion is trivial.

All that remains is w1 (P). If this is abelian, then 7 (P) = H;(P) and the
above argument applies. We will show that 7 (P) is abelian.'!

L Above we used additive notation. Here, since m1(P) might not be abelian, we use
multiplicative notation.
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Let a,b € m(P). Then, using (3),

a-b = @ a,a,...,a)pbb, ... b)
(by (4)) = p.(a,ee,....e)fp.(e,be, ... e)f

- SD*(aka b 9 67 ) 6)
= go*(bk,e,e,...,e)go*(e,a L Eyeiiy€)
= (b, b, ) b)@* (@7 a, ) CL)
= b-a
This completes the proof. O

Some of these results were earlier discovered in a purely topological con-
text by Auman and Eckman; see [7] for references.

3.4 Other Results

Since Chichilnisky’s initial work in the 1980s, there have been a couple of
dozen more recent papers on continuous social choice theory. See [9] and [10]
for recent surveys. It should be noted that it’s not clear what, if any, impact
this continuous framework has had, and that there are some critics.

4 Baryshnikov’s Topological Proof of Arrow’s
Theorem

In the 1990s, Baryshnikov [2] gave a topological proof of Arrow’s Theorem
that suggests a unification with Chichilnisky’s results.

4.1 Statement and Simplification

We recall the statement of Arrow’s Theorem:

Theorem (Arrow’s Impossibility Theorem). When |X| > 3, there is no non-
dictatorial social welfare function f : RF — R that satisfies both the Pareto
principle and ITA.

18



First, Baryshnikov shows that it suffices to show non-existence of such a
function on strict preferences. (Recall from §1.1 that a strict preference is a
total order, whereas a weak preference is a weak order.)

Lemma 18 (Baryshnikov Lemma 1). The image of the restriction of a social
welfare function satisfying IIA and Pareto to strict orders lies in the set of
strict orders.

If there were a non-dictatorial function on weak preferences that satisfied
ITA and Pareto, then, by the lemma, its restriction to strict preferences would
be a non-dictatorial function on strict preferences satisfying ITA and Pareto.

Proof. Let P be the set of strict preferences on X and R the set of weak
preferences on X. Let ¢ : R¥ — R satisfy IIA and Pareto. We want to show
that ¢|pr C P.

Suppose for the sake of contradiction that there is some strict preference
profile P* = (Py,..., P;) such that there are z # y € X with vE,pryy. By
ITA, any profile P"* that agrees with P* on x and y will also produce xE,pr)y.

Since | X| > 3, there is some third alternative z. Let P*(0) = (Pl(o), ce P,fo))
be a profile of strict preferences that agrees with P* on = and y, and where
z is ranked immediately below y for all voters i. Let P*(1) = (Pl(l), e P,El))
differ from P*© only in that z is now ranked directly above y instead of
directly below it. By Pareto, yP©z and zPMy. P*O) and P*M) offer the
same rankings of z relative to 3. Therefore by IIA we have yE®x and
yEMz, which implies that 2Pz and zPMz. But P*© and P*M) agree
in their rankings of # and z, so by IIA, 2P©z; «—= 2zPWz giving a
contradiction. O

The idea of our proof will be to provide a topological structure to the
discrete, combinatorial rankings in Arrow’s framework. In §4.2, we introduce
nerves, which we will use as our tool to create this topology. In §4.3 and
§4.4, we will construct the appropriate topological spaces for preferences
and profiles of preferences, respectively, and calculate their homologies and
cohomologies. Finally, in §4.5, we will provide a general axiomatic framework
for these topological spaces, and prove Arrow’s theorem using properties of
their homology and cohomology.
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4.2 Nerves and the Nerve Theorem

Let X be a topological space, and let U = {U;},.; be a cover of X. The
nerve N'(U) of this cover is the simplicial complex with vertices the U € U
and with simplices {Uy, ..., Ui} it UyN---NUg # 0. The concept of a nerve
was introduced to provide a combinatorial basis for topological spaces, but
we will use it to be provide a non-trivial topological space on a combinatorial
(discrete) space.

The key theorem we will need about nerves is the nerve theorem.

Theorem 19 (Nerve Theorem). Let X be a paracompact topological space
and U = {Us},;c; an open cover of X. Suppose that the intersection Njec;U; =
0 or is contractible for all J C 1. Then N(U) ~ X.

A proof is given in [6], §4.G.

4.3 Topology on Preferences

Let P be the set of strict preferences on a set X of alternatives of cardinality
n. For notational convenience, let X = {1,2,... ,n}. Let i < j € N. We
define

U; ={PcP|iPj}

and
U; ={P eP|jPi}.

(Note that U;" = U;.) Let U = {U | o€ {—,+},i<j}. We observe that
U covers P. Let us denote the nerve of this covering of P by Np.

Theorem 20 (Baryshnikov Theorem 1). The simplicial complex Np is ho-
motopy equivalent to the sphere S"2.

Proof. Let A = {(z,z,...,z) € R"| x € R}. Let M =R"\A.

CrAamm: M ~ S"2.

Proor or CrAmM: For simplicity, we assume that A instead is the
nth axis. Thus M = {(z1,...,2,)| ~(x;=---=2x,_1 =0)}. Consider
the orthogonal complement of A: A+ = {(zy,...,7,.1,0)}. We can eas-
ily deformation retract M onto this orthogonal complement, giving us M =~
{(x1,...,2,)| ©, # 0}. This is simply R"~! minus a point, which is clearly
homotopy equivalent to S™~2. O
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Our plan will be to show that M with a certain covering has the same
nerve as P does, but also satisfies the conditions of the nerve theorem, and
so Np ~ §"2.

Define U;; = {(z1,...,2,) € R"| 2; > x;}. Now, we show that any P €
P can be represented by a vector in M. A simple way to do this is to define
f:P — M by sending P — (x1,...,x,) where if ¢ is most preferred by P,
then z; = n, if ¢ is second-most preferred by P, then x; = n — 1, and so on.
(Equivalently, z; is the Borda count value for i (see Example 4).) Now we
see of course the link between the U;;’s in M and the L{%’S in P. We observe
that the intersection properties of these are the same, thus the nerve Ay, of
M with the covering U = {Uy;}, . x is the same as Np.

Finally, we observe that these U;;’s in M are convex, and thus any inter-
section of them will be convex, and thus contractible. Thus, by the nerve
theorem, Ny ~ M. We know Ny = Np and M ~ S"~2 establishing our
result. O

Now, we want to figure out what the generator of the H,, _o(Np) is.

Let Aio; be the simplex on all the vertices UZ Note that AMp is a sub-

complex of this. First, we set up a bijective correspondence between oriented
graphs on the vertices X = {1,...,n} and sub-simplices of Ay. (We pick
some lexigraphic ordering on the U7s to give an orientation to these sim-
plicial complexes.) Consider some oriented, simple graph on X. For each
directed edge from ¢ to j that this graph has, the corresponding simplex has
as a vertex L{J; likewise, if there’s an arrow from j to 4, then the simplex has
U;.
Note that the corresponding simplicial complex is in Np iff the graph g
has no oriented cycles. First, if g has an oriented cycle, then it will violate
transitivity, so there can be no preference relation satisfying it. Now, suppose
that g has no oriented cycles. We claim that we can then extend it to a total
order. This extension proceeds by induction on the number of vertices. Since
there are no oriented cycles, there is some vertex v that has no arrows pointing
to it. Add the edge v — w for all vertices w that don’t already have such an
edge. Now, inductively repeat this process on the graph omitting the vertex
v. This process will terminate with a total order. This order will correspond
to some simplex in Np, and so the original partial order will correspond to
a subsimplex.

Consider a simple cycle of length n on the set of alternatives X =
{1,...,n}. Let this be an oriented graph; call it g. Denote the corresponding
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simplex by S(g). Now consider the boundary 05(g); it is a cycle.

Proposition 21 (Baryshnikov Proposition 2). The cycle 0S(g) is an n — 2-
dimensional cycle of Np. If g is an oriented cycle, then 0S(g) is a generator
of H,_o(Np); otherwise, it is 0.

Proof. Suppose, first, that g is not an oriented cycle. Then S(G) € Np.
Therefore, [05(G)] =0 € H,(Np).

Now, suppose that g is an oriented cycle. We define a second cover of

R™A. Let

V; = {x € R"| Ji such that z; < z;}.
Note that U;; C Vj; indeed, V; = |, ;U;. (Here we conflate U;; with
Uij.) The V; thus also cover R"\A. Furthermore, this cover still satisfies
the conditions of the nerve theorem: all intersections are contractible or non-
empty. Call the nerve of this cover Ny,. For clarity, for this proof, we will
also refer to the nerve Np with cover U as Ny,.

We have a map of inclusions U;; — V;. Since both Ny and Ny are
homotopy equivalent to M, by the nerve theorem, we get induced maps
Ny — Ny that give the homotopy equivalence Ny ~ Ny.

Now, because the intersection properties of {V; }j are simple, it’s not hard
for us to figure out the geometric realization of NVy: all intersections are non-
empty except for the intersection of all the V;’s. Therefore, the geometric
realization is the boundary of the n — 1-dimensional simplex, A",

Now, we see where 0S(g) gets mapped. When ¢ is an oriented cycle,
0S(g) is going to be a sum of what corresponds to oriented graphs like
1—-2—---—>n,2—-3—---—n—1, etc. Each of these will be mapped
to an n — 2 dimensional face of A" 1 — 2 — ... — n, for example, will
be mapped to the n — 2 dimensional face containing every vertex except V,,.
Thus, we have that 9S(g) gets mapped to JA™ !, which is a generator of the
homology. O

4.4 Topology on Profiles

So far, we have looked at the associated topology for just one voter’s pref-
erences P. We now consider a profile of preferences P*. We have that U
cover P¥. Let Npr be the nerve of this covering.
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Now, again, we construct a manifold with an associated cover that will
allow us to use the nerve theorem. Let

Ug = {(w(l),...,x(k)) ‘ 2 e R”,xﬁl) > xél) if o = +,:U§l) < wg-l) if o = —},
where i < j € X,0 € {—,+}". Let

ME= |J U

i<.j7§€{+77}n

Once again, since each of these Ufs is convex, the intersection of any collec-
tion of them will be contractible. Thus, the nerve theorem applies. Likewise,
we can associate the nerve of MK with the nerve of P*. Thus, we again are
curious about M K. Note that MK = M¥*.

Now, we calculate the topology of M K. First, we define a projection map-
ping p; : Npr — NP that sends a tuple of comparisons to its [th component.
Let ¢ be a generator of H" 2(Np).

Proposition 22 (Baryshnikov Propositions 4 and 5). H'(MK,Z) = 0 for
1 <i<n—2, and H"*(MK,Z) = 7ZF, with basis consisting of p}(c),
1<I<k.

Proof. We use Kiinneth’s formula; see [6], §3.2. Recall that the cohomology
of M has Z in dimensions 0 and n — 2, and is otherwise 0. Kiinneth’s formula
gives us the isomorphism

H*(M)®" — H*(M")
given by
TR ®xp = pi(xy) — - — pr(ag).

Since the x; can be non-trivial only in dimensions 0 and n — 2, this gives us
that H'(MK) =0 for 1 <i < n — 2. In dimension n — 2, it’s clear that the
elements

1@--®1® r 1®---®1]1<I<k

Ith spot

form a basis, and these elements correspond precisely to the p;(c)’s. O
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4.5 The Axiomatic Framework and Conclusion of Proof

4.5.1 The Axiomatic Framework

The proof of Arrow’s theorem relies on homological properties of nerves that
we derive from coverings of sets of preferences and profiles. We can easily
axiomatize the properties needed for the actual proof of the theorem.

Definition 23. Let A and B be simplicial complexes, with simplicial maps

so that the p;’s induce the isomorphisms H™(B) = @ H™(A), the p; in-
duce maps i; on homology that project onto the appropriate factor, and all
composed maps A — B — A are the identity. We call such a setup purely
separated (in dimension m).

Definition 24. Suppose we have purely separated data, as above. Fix some
index 1 € {1,...,k}. Consider the composite map

Hyn(A) "> Hyu(B) L= H,(A) |
where i; is the inclusion of the lth factor. If this map is an isomorphism,

we say that | is a homological dictator; if this map is trivial, we say | is
homologically irrelevant.

We will construct in §4.5.2 simplicial complexes that give precisely this
sort of purely separated data, and where H™(A) = Z. Then, we will show
in §4.5.3 that dictators are homological dictators and non-dictators are ho-
mologically irrelevant. With these facts, the following theorem will give us
Arrow’s theorem.

Theorem 25. Suppose there is purely separated data in dimension m where
the mth homology group of A contains a free part, and suppose every index
1s either a homological dictator or is homologically irrelevant. Then there is
exactly one homological dictator.
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Proof. Consider some free generator h € H,,(A). By pure separatedness,
we have D,(h) = (h,...,h) € Hp,(A). Therefore, since we know that every
factor is either a homological dictator or is homologically irrelevant, f, o
D.(h) = YF | d;h, where d; is 1 if i is a homological dictator and 0 if it
is homologically irrelevant. Since we know that this mapping is also the
identity, Zle d; = 1, so there is exactly one dictator. O

4.5.2 Pure Separatedness

Now, we can get our purely separated data. We recall that we have a function
f P — P. A is equivalent to saying that f(U7) C U for some T €
{—,4+}" and o € {—,+}. This therefore gives us a mapping from Np« to
Np, which we will still call f. Define a diagonal mapping D : Np — Np« that
sends U} to L{Z-(;"”’J). We can now define a diagram of simplicial mappings:

Pareto gives us the fact that all composite maps from Np to itself are
identical.

4.5.3 Homological Dictatorship

Now it suffices to show that our setup meets the criteria about dictatorship.
Let ¢ be the generator of H" ?(Np), and let h;, i = 1,...,k be the dual
basis of homologies corresponding to the p#(c) cohomology basis in Npr. We

write the pairing of homology and cohomology in bracket form: (a,b) := b(a),
where b € H*(M) and a € H.(M).

Proposition 26 (Baryshnikov Proposition 7). If a voter [ is a dictator, then
(hi, f*(c)) = 1; otherwise, it is 0.

Proof. Let § = (g1,...,9x) be a k-typle of oriented graphs, each of which
has the unoriented support of the cycle 1 —2 —--- —n — 1, and which is an
oriented cycle for g; and is acyclic for all other factors. This defines a simplex

of n vertices S(g) in Np: U7, has the sign o; determined by the direction

(]

of the edge between i and ¢ + 1 in graph g;. Again, we have the boundary
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05(g). The way we chose our ¢, we will have that 0S(g) represents h; in
Hn,Q(Npk).

Now, consider the image of 0S(§) under f.. This is going to be a cycle in
Np, and thus correspond to an oriented graph g with the same unoriented
support. Suppose ¢ is not oriented. Then each simplex in 95(g) is going
to agree, under f,, on some vertex, say Uf,. Suppose, first, that they all
have U,. Then f sends a profile with 2 — --- — n — 1 to a result with
1 preferred over 2, and thus [ is not a dictator. Now suppose that they all
have U;,. But then f, maps 1 — 2 — .- — n to something that [ disagrees
with, and so [ is not a dictator.

We note that (hr, £*(c)) = (£.(h1), ) = (F+(h(@)), ). Now, (£.(h(7)), ) =
0 is equivalent to ¢ not being an oriented cycle. This completes one direction.

Now we show that if (h;, f*(¢)) = 1, then [ is a dictator. We have that
the corresponding g, as above, now must be oriented. We can vary the
components g¢,,, m # [ for § without changing ¢, since ¢ must remain an
oriented cycle and by ITA, each change only affects one arrow at a time.
Thus, we must have that, for any ¢ — j, [ is a dictator. O

4.5.4 Proof of Arrow’s Theorem

Arrow’s theorem is now immediate. Suppose for the sake of contradiction
that every voter were a non-dictator. Then, by Proposition 26, every voter
is homologically irrelevant. In §4.5.2 we finished the construction of purely
separated data, which allows to use Theorem 25 to show that there is a
homological dictator. This gives a contradiction, completing the proof. [

References
[1] David Austen-Smith and Jeffrey S. Banks, Positive political theory 1: Collective pref-
erence, University of Michigan Press, Ann Arbor, 1999.

[2] Yuliy M. Baryshnikov, Unifying impossibility theorems: A topological approach, Ad-
vances in Applied Mathematics 14 (1993), 404-415.

[3] Graciela Chichilnisky and Geoffrey Heal, Necessary and sufficient conditions for a
resolution of the social choice paradoz, Journal of Economic Theory 31 (1982), 68—
87.

[4] Graciela Chichilnisky, Social choice and the topology of spaces of preferences, Ad-
vances in Mathematics 37 (1980), 165-176.

26



Wulf Gaertner, A primer in social choice theory, Oxford University Press, Oxford,
2006.

Allen Hatcher, Algebraic topology, Cambridge University Press, New York, 2002.

Charles D. Horvath, On the topological social choice problem, Social Choice and Wel-
fare 18 (2001), 227-250.

Rafe H. Kinsey, Generalized social choice: Partial preferences, 2008. http://www.
stanford.edu/~rkinsey/partial-prefs.pdf.

Luc Lauwers, Topological social choice, Mathematical Social Sciences 40 (2000), 1-39.

Paras Mehta, Topological methods in social choice theory: An overview, Social Choice
and Welfare 14 (1997), 233-243.

James R. Munkres, Topology, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2000.

Shmuel Weinberger, On the topological social choice model, Journal of Economic The-
ory 115 (2004), 377-384.

27



